Räumliche Fähigkeiten in der Chemie – Mehr als nur mentale Rotation?

Räumliche Fähigkeiten in der Chemie – Mehr als nur mentale Rotation?

 

Literatur zum Poster

  • Averbeck, D. (2021). Zum Studienerfolg in der Studieneingangsphase des Chemiestudiums – Der Einfluss kognitiver und affektiv-motivationaler Variablen. Berlin: Logos.
  • Binnewies, M., Finze, M., Jäckel, M., Schmidt, P., Willner, H., & Rayner-Canham, G. (2016). Allgemeine und Anorganische Chemie. Berlin: Spektrum Akademischer Verlag.
  • Buckley, J., Seery, N., & Canty, D. (2018). A Heuristic Framework of Spatial Ability: a Review and Synthesis of Spatial Factor Literature to Support its Translation into STEM Education. Educational Psychology Review, 30(3), S. 947-972. doi:10.1007/s10648-018-9432-z
  • Ekstrom, R. B., French, J. W., Harman, H. H., & Derman, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton (New Jersey): Education Testing Service.
  • Harle, M., & Towns, M. (2011). A Review of Spatial Ability Literature, Its Connection to Chemistry, and Implications for Instruction. Journal of Chemical Education, 88(3), S. 351-360. doi:10.1021/ed900003n
  • Kozma, R., & Russell, J. (2007). Students Becoming Chemists: Developing Representational Competence. In J. K. Gilbert (Hrsg.), Visualization in Science Education (S. 121-146). Dordrecht: Springer. doi:10.1007/1-4020-3613-2_15
  • Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The Roles of Representations and Tools in the Chemistry Laboratory and Their Implications for Chemistry Learning. Journal of the Learning Sciences, 9(2), S. 105-143. doi:10.1207/s15327809jls0902_1
  • Landis, J., & Koch, G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), S. 159-174. doi:10.2307/2529310
  • Lohman, D. F. (1996). Spatial Ability ang g. In I. Dennis, & P. Tapsfield (Hrsg.), Human abilities: Their nature and measurement (S. 97-116). New York: Lawrence Erlbaum Associates.
  • Nitz, S. (2012). Fachsprache im Biologieunterricht: Eine Untersuchung zu Bedingungsfaktoren und Auswirkungen. Kiel: Christian-Albrechts-Universität.
  • Rau, M. A. (2017). Do Knowledge-Component Models Need to Incorporate Representational Competencies? International Journal of Artificial Intelligence in Education, 27(2), S. 298-319. doi:10.1007/s40593-016-0134-8
  • Rau, M. A. (2018). Making connections among multiple visual representations: how do sense-making skills and perceptual fluency relate to learning of chemistry knowledge? Instructional Science, 46(2), S. 209-243. doi:10.1007/s11251-017-9431-3
  • Schneider, J., & McGrew, K. (2012). The Cattell-Horn-Carroll (CHC) Model of Intelligence. In D. P. Flanagan, & E. M. McDonough, Contemporary Intellectual Assessment – Theories, Tests, and Issues (3. Ausg., S. 99-144). New York: Guilford Publications.
  • Taskin, V., Bernholt, S., & Parchmann, I. (2015). An inventory for measuring student teachers’ knowledge of chemical representations: design, validation, and psychometric analysis. Chemistry Education Research and Practice, 16(3), S. 460-477. doi:10.1039/C4RP00214H
  • Yoon, S. Y. (2011). Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised PSVT:R). West Lafayette (Indiana): Purdue University.
Download des Posters