

Friedrich-Alexander-Universität Philosophische Fakultät und **Fachbereich Theologie**

Disentangling the relationship between spatial abilities and representational competence in chemistry

Theoretical Framework

- **1** Representations & representational competence in chemistry
- Representations play a key role in learning chemistry and developing content knowledge for problem-solving processes. (Rau, 2017; Kozma et al., 2000)

Sebastian Nickel

- Chemists use representations (e.g., graphs, diagrams and chemical equations) to understand and depict chemical phenomena. (Rau, 2017; Harle & Towns, 2011)
- Representation dilemma": students have to learn content they do not understand from representations they may not yet understand, either. (Rau, 2018)
 - ⇒ To overcome the "representation dilemma", students need representational

2 Spatial Abilities in Chemistry

Representations in chemistry are fairly abstract and highly spatial (Rau, 2017), especially in coordination chemistry.

competence. (Rau, 2018)

Representational Competence	description & interpretation	The ability to describe chemical phenomena with representations and to identify patterns and features of representations.	kills
	construction	The ability to construct or choose appropriate representations.	v-level sl
	translation	The ability to translate a given visual representation into another and to change perspectives.	low
	comparison & critique	The ability to compare multiple representations and explain how one representation says something that cannot be said with another	kills
	epistemology & function	The ability to take the epistemological position that representations correspond to but are distinct from the phenomena that are observed.	level s
	argumentation	The ability to use representations in as evidence to support claims, draw interference, and develop hypothesis on observable chemical phenomena.	high

Figure 1: Overview of the skills of representational competence (adapted from Kozma and Russell, 2007 and Gurung et al., 2022) and their categories (adapted from Nitz, 2012).

 $[Co(NO_2)_3(NH_3)_3]$ fac isomer mer isomer

Figure 2: fac(ial)- and mer(idional) isomer of an octahedral complex as example for an abstract and spatial representation. (Binnewies et al., 2016)

- Spatial ability is "the ability to generate, retain, and manipulate abstract visual **images**". (Lohman, 1979, p. 126)
- In the Cattell-Horn-Carroll (CHC) theory, there are 11 spatial factors which load on spatial ability (*visual processing*). Recently, more spatial factors have been identified. (Schneider & McGrew, 2012)
- In STEM domains, especially mental rotation (2-D: speeded rotation, **3-D:** *spatial relation*) is a predictor for students' achievement. (Yoon, 2011; Buckley, Seery & Canty, 2018)
- The interplay between spatial factors (table 1) and representational competence (figure 1) has only been partially investigated.

Research Questions, Designs and Methods

Which reasoning strategies do students employ while describing & interpreting, translating, and constructing dash-wedge diagrams and ball-and-stick models in the context of coordination chemistry?

 Table 1: Overview of the focused spatial factors and
the referring tests.

Spatial factors (Schneider, & McGrew, 2012)	Test instruments (Ekstrom et al., 1976; Yoon, 2011)
visualization	Paper Folding Test
speeded rotation	Card Rotations Test
closure speed	Gestalt Completion Test
flexibility of closure	Hidden Figure Test
visual memory	Building Memory
spatial scanning	Maze Tracing Speed Test
perceptual speed	Identical Pictures Test
spatial relation	PSVT:R

Which **difficulties** do students encounter while *describing* & interpreting, translating, and constructing dash-wedge diagrams and ball-and-stick models in the context of coordination chemistry?

Chemistry education students ($n_{q}=17$, $n_{d}=8$; $M_{age}=22.04$, $SD_{age}=1.73$) with knowledge about coordination chemistry in summer 2023.

Think-aloud method with representation-based coordination chemistry tasks.

▷ Qualitative content analysis. (Mayring & Fenzl, 2022) ▷ Deductive analysis with a coding system.

To what extent can the theoretically derived skills *description* & interpretation, construction and translation be measured by a developed pen and paper instrument?

1st semester students of the preparatory course in winter 2023.

....

Pilot instrument: representational competence instrument ▷ Focus on the low-level skills of representational competence:

Figure 3: Incomplete-block-design for the representational competence (blocks A-C) and the text-based tasks (block F).

Preview: interrater analysis of the representational competence

- ▷ Raters' agreement on the assigned items (Landis & Koch, 1977):
 - ► Low-level skills: substantial (.601 $\leq \kappa_{\text{Fleiss'}} \leq .743$)
 - ► High-level skills: fair up to substantial (.268 $\leq \kappa_{\text{Eleiss'}} \leq$.618).
- \Rightarrow Concretization of the definitions for the skills.
- \Rightarrow (high-level) skills cannot be easily assigned.
- \Rightarrow Focus on the low-level skills.

How are the skills description & interpretation, construction and *translation* related to the factors of spatial abilities?

1st semester students of the preparatory course in winter 2024.

Representational competence instrument

description & interpretation, construction and translation ▷ Single-choice and semi-opened items.

- Items with non-verbal representations (newly constructed or adapted from Taskin et al. (2015) and Averbeck (2021)).
- ▷ Assignment of the items to the representational skills (figure 1) and checking the assignment through interrater analysis.
- ▷ Content knowledge items with only text-based tasks. (Averbeck, 2021)

spatial factors instrument

- ▷ Eight scales (table 1) for spatial factors. (Ekstrom et al., 1976; Yoon, 2011)
- Rasch analysis (partial credit model) to analyze the representational competence instrument.
- Correlation and regression analyses for a first insights into the interplay between representational skills and spatial abilities.

3rd

▷ Revised version of the instrument piloted in the 2nd study.

Spatial factors instrument

Eight scales (table 1) for spatial factors. (Ekstrom et al., 1976; Yoon, 2011)

L

Correlation and regression analyses to investigate the interplay between representational competence and spatial abilities.

