Investigating the role of representational competence and spatial ability in learning with chemical representations
References
Gurung, E., Jacob, R., Bunch, Z., Thompson, B., & Popova, M. (2022). Evaluating the Effectiveness of Organic Chemistry Textbooks for Promoting Representational Competence. Journal of Chemical Education, 99(5), S. 2044-2054. doi:10.1021/acs.jchemed.1c01054
Harle, M., & Towns, M. (2011). A Review of Spatial Ability Literature, Its Connection to Chemistry, and Implications for Instruction. Journal of Chemical Education, 88(3), S. 351-360. doi:10.1021/ed900003n
Kozma, R., & Russell, J. (1997). Multimedia and Understanding: Expert and Novice Responses to Different Representations of Chemical Phenomena. Journal of Research in Science Teaching, 34(9), S. 949-968. doi:10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
Kozma, R., & Russell, J. (2005). Students Becoming Chemists: Developing Representational Competence. In J. K. Gilbert (Hrsg.), Visualization in Science Education (S. 121-146). Dordrecht: Springer. doi:10.1007/1-4020-3613-2_15
Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The Roles of Representations and Tools in the Chemistry Laboratory and Their Implications for Chemistry Learning. Journal of the Learning Sciences, 9(2), S. 105-143. doi:10.1207/s15327809jls0902_1
Rau, M. A. (2017). A Framework for Educational Technologies that Support Representational Competencies. IEEE Transactions on Learning Technologies, 10(3), S. 290-305. doi:10.1109/TLT.2016.2623303
Rau, M. A. (2018). Making connections among multiple visual representations: how do sense-making skills and perceptual fluency relate to learning of chemistry knowledge? Instructional Science, 46(2), S. 209-243. doi:10.1007/s11251-017-9431-3
Stieff, M., Origenes, A., DeSutter, D., Lira, M., Banevicius, L., Tabang, D., & Cabel, G. (2018). Operational Constraints on the Mental Rotation of STEM Representations. Journal of Educational Psychology, 110(8), S. 1160-1174. doi:10.1037/edu0000258